ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
Melvin M. Levine
Nuclear Science and Engineering | Volume 44 | Number 3 | June 1971 | Pages 372-375
Technical Paper | doi.org/10.13182/NSE71-A20167
Articles are hosted by Taylor and Francis Online.
A new method is presented for analyzing reaction rate measurements to obtain cross sections. In the usual approach, a complete forward or slowing down calculation is required for each beam energy at which the reaction rate is to be obtained. The approach here uses an adjoint formulation, yielding reaction rate vs energy in a single pass, making the analysis easier to perform and the physical process more transparent. The accuracy of the approximations involved in the present approach is tested in two cases by comparison with rigorous Monte Carlo results. For certain conditions of sample thickness and cross section as shown in this paper, the usual trial and error procedure for finding cross sections that fit the measured reaction rates can be avoided. It is then possible to invert the reaction rates directly into cross sections. A test case is described in which this direct inversion process proved to be stable and accurate.