ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
ANS 2025 election is open
The American Nuclear Society election is now open. Members can vote for the Society’s next vice president/president-elect and treasurer as well as six board members (four U.S. directors, one non-U.S. director, and one student director). Completed ballots must be submitted by 1:00 p.m. (EDT) on Tuesday, April 15, 2025.
T. C. Chawla, B. M. Hoglund
Nuclear Science and Engineering | Volume 44 | Number 3 | June 1971 | Pages 320-344
Technical Paper | doi.org/10.13182/NSE71-A20165
Articles are hosted by Taylor and Francis Online.
The flow transients as initiated by rapid gas release are studied both experimentally and analytically. The mathematical model developed considers a multiple pin failure in a fast-reactor subassembly. In formulating the model, it is assumed that the released gas fills the subassembly cross section uniformly and that the coolant flow is incompressible. The model considers the inertial contribution of the liquid columns beyond the pin assembly, as well as the three-dimensional flow effects in the inlet and outlet plenums. In the application of the model to out-of-pile simulation loops, or in-pile test loops, points of departure in hydraulic simulation of the actual reactor conditions can be taken into account. A quantitative criterion for valid application of the model is obtained in terms of breach size, number of pins ruptured, initial gas plenum pressure and temperature, and subassembly operating conditions. The predictions of the flow transients obtained by means of the model agree well with the experimental data. An example of the application of the model to a reactor configuration is given using an FFTF fuel subassembly.