ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
How to talk about nuclear
In your career as a professional in the nuclear community, chances are you will, at some point, be asked (or volunteer) to talk to at least one layperson about the technology you know and love. You might even be asked to present to a whole group of nonnuclear folks, perhaps as a pitch to some company tangential to your company’s business. So, without further ado, let me give you some pointers on the best way to approach this important and surprisingly complicated task.
D. J. Gorman
Nuclear Science and Engineering | Volume 44 | Number 3 | June 1971 | Pages 277-290
Technical Paper | doi.org/10.13182/NSE71-A20161
Articles are hosted by Taylor and Francis Online.
It is generally agreed that lateral vibration of reactor fuel elements is random in nature and is caused by random pressure fluctuations acting on the element surface. A series of tests has been conducted in which a single test element has been subjected to two-phase parallel flow in a circular annulus. Statistical properties of the amplitude of vibration have been measured for various simulated steam qualities with fixed mass flow rate. Statistical properties of the two-dimensional pressure field surrounding the element have also been taken. These properties have been used in conjunction with the linear random vibration theory to arrive at predicted values for vibration amplitude. Good agreement has been found between measured and predicted values of vibration amplitude. It is shown that a high peripheral correlation of the driving forces is primarily responsible for the larger vibrations encountered in two-phase flow. Spectral analysis of the driving forces has been provided with a view toward providing useful information for fuel design.