ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Grant awarded for advanced reactor workforce needs in southeast U.S.
North Carolina State University and the Electric Power Research Institute have been awarded a $500,000 grant by the NC Collaboratory for “An Assessment to Define Advanced Reactor Workforce Needs,” a project that aims to investigate job needs to help enable new nuclear development and deployment in North Carolina and surrounding areas.
D. D. B. van Bragt, Rizwan-uddin, T. H. J. J. van der Hagen
Nuclear Science and Engineering | Volume 131 | Number 1 | January 1999 | Pages 23-44
Technical Paper | doi.org/10.13182/NSE99-A2016
Articles are hosted by Taylor and Francis Online.
A dynamic model of natural circulation boiling water reactors (BWRs) is analyzed using a bifurcation code and numerical simulations. The two fundamental bifurcation types relevant to BWRs, the supercritical and the subcritical Hopf bifurcations, are first studied in natural circulation systems without nuclear feedback. The effect of nodalization approximation in the riser on stability and bifurcation characteristics of the system is determined. The strong effect of the nuclear-thermohydraulic interaction on the nonlinear characteristics of a natural circulation BWR is then explored in a parametric study. Supercritical bifurcations become dominant in the (high-power) Type-II region for small values of the subcooling number and a strong nuclear-thermohydraulic coupling. A cascade of period-doubling pitchfork bifurcations (deep in the unstable region) is also predicted by the model under these conditions. Subcritical bifurcations in the Type-II instability region were found for larger values of the subcooling number. Both Hopf-bifurcation modes were also encountered in the Type-I instability region (low power or high power/high subcooling). Finally, the nonlinear reactor model was validated successfully compared with nonlinear power oscillations measured in a natural circulation BWR.