ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
R. J. Gehrke, R. G. Helmer, C. W. Reich
Nuclear Science and Engineering | Volume 70 | Number 3 | June 1979 | Pages 298-306
Technical Paper | doi.org/10.13182/NSE79-A20151
Articles are hosted by Taylor and Francis Online.
The emission probability of the 312-keV gamma ray from the decay of 27-day 233Pa has been measured. A 4π beta-gamma coincidence counting system was used to determine the 233Pa sample disintegration rates, and Ge(Li) spectrometers were used to measure the gamma-ray emission rates. The resulting value for the emission probability is Iγ (312 keV) = (38.6 ± 0.5) photon/100 decays. The relative intensities of the K x rays and gamma rays emitted in the decay of 233Pa were also measured.