ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NEA panel on AI hosted at World Governments Summit
A panel on the potential of artificial intelligence to accelerate small modular reactors was held at the World Governments Summit (WGS) in February in Dubai, United Arab Emirates. The OECD Nuclear Energy Agency cohosted the event, which attracted leaders from developers, IT companies, regulators, and other experts.
R. J. Gehrke, R. G. Helmer, C. W. Reich
Nuclear Science and Engineering | Volume 70 | Number 3 | June 1979 | Pages 298-306
Technical Paper | doi.org/10.13182/NSE79-A20151
Articles are hosted by Taylor and Francis Online.
The emission probability of the 312-keV gamma ray from the decay of 27-day 233Pa has been measured. A 4π beta-gamma coincidence counting system was used to determine the 233Pa sample disintegration rates, and Ge(Li) spectrometers were used to measure the gamma-ray emission rates. The resulting value for the emission probability is Iγ (312 keV) = (38.6 ± 0.5) photon/100 decays. The relative intensities of the K x rays and gamma rays emitted in the decay of 233Pa were also measured.