ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
ANS continues to expand its certificate offerings
It’s almost been a full year since the American Nuclear Society held its inaugural section of Nuclear 101, a comprehensive certificate course on the basics of the nuclear field. Offered at the 2024 ANS Winter Conference and Expo, that first sold-out course marked a massive milestone in the Society’s expanding work in professional development and certification.
N. B. Sullivan, J. J. Egan, G. H. R. Kegel, P. Harihar
Nuclear Science and Engineering | Volume 70 | Number 3 | June 1979 | Pages 294-297
Technical Paper | doi.org/10.13182/NSE79-A20150
Articles are hosted by Taylor and Francis Online.
The absolute 125-deg differential gamma-ray production cross section for the 1780-keV transition in the 28Si(n,n′γ)28Si reaction has been measured from 1.96- to 4.15-MeV bombarding energy. This transition represents the decay of the 2+ first excited state to the 0+ ground state of 28Si. The data were corrected for neutron multiple scattering as well as neutron and gamma-ray attenuation in the sample. The angle-integrated neutron scattering cross section was inferred from the gamma-ray production data using the shape of the gamma-ray angular distributions obtained from compound nucleus statistical model calculations. Incident neutrons were produced via the 3H(p,n)3 He reaction using a target ∼100 keV thick for 3.5-MeV protons, and this energy spread is reflected in the structure observed in the cross section.