ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
N. B. Sullivan, J. J. Egan, G. H. R. Kegel, P. Harihar
Nuclear Science and Engineering | Volume 70 | Number 3 | June 1979 | Pages 294-297
Technical Paper | doi.org/10.13182/NSE79-A20150
Articles are hosted by Taylor and Francis Online.
The absolute 125-deg differential gamma-ray production cross section for the 1780-keV transition in the 28Si(n,n′γ)28Si reaction has been measured from 1.96- to 4.15-MeV bombarding energy. This transition represents the decay of the 2+ first excited state to the 0+ ground state of 28Si. The data were corrected for neutron multiple scattering as well as neutron and gamma-ray attenuation in the sample. The angle-integrated neutron scattering cross section was inferred from the gamma-ray production data using the shape of the gamma-ray angular distributions obtained from compound nucleus statistical model calculations. Incident neutrons were produced via the 3H(p,n)3 He reaction using a target ∼100 keV thick for 3.5-MeV protons, and this energy spread is reflected in the structure observed in the cross section.