ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Grant awarded for advanced reactor workforce needs in southeast U.S.
North Carolina State University and the Electric Power Research Institute have been awarded a $500,000 grant by the NC Collaboratory for “An Assessment to Define Advanced Reactor Workforce Needs,” a project that aims to investigate job needs to help enable new nuclear development and deployment in North Carolina and surrounding areas.
W. S. Kiger III, S. Sakamoto, O. K. Harling
Nuclear Science and Engineering | Volume 131 | Number 1 | January 1999 | Pages 1-22
Technical Paper | doi.org/10.13182/NSE99-A2015
Articles are hosted by Taylor and Francis Online.
To meet the needs for neutron capture therapy (NCT) irradiations, a high-intensity, high-quality fission converter-based epithermal neutron beam has been designed for the MITR-II research reactor. This epithermal neutron beam, capable of delivering treatments in a few minutes with negligible background contamination from fast neutrons and photons, will be installed in the present thermal column and hohlraum of the 5-MW MITR-II research reactor. Spent or fresh MITR-II fuel elements will be used to fuel the converter. With a fission converter power of ~80 kW using spent fuel, epithermal fluxes (1 eV < E < 10 keV) in excess of 1010 n/cm2s are achievable at the target position with negligible photon and fast neutron contamination, i.e., <2 × 10-11 cGycm2/n. With the currently available 10B delivery compound boronophenylalanine-fructose, average therapeutic ratios of ~5 can be achieved using this beam for brain irradiations with deep effective penetration (~9.5 cm) and high dose rates of up to 400 to 600 RBE cGy/min. If NCT becomes an accepted therapy, fission converter-based beams constructed at existing reactors could meet a large fraction of the projected requirements for intense, low-background epithermal neutron beams at a relatively low cost. The results of an extensive set of neutronic design studies investigating all components of the beam are presented. These detailed studies can be useful as guidance for others who may wish to use the fission converter approach to develop epithermal beams for NCT.