Neutron total cross sections of natural carbon are deduced from the observed transmission of approximately monoenergetic neutrons through carbon samples of various thicknesses. The measurements extend from ∼0.1 to 4.5 MeV, with resolutions of ∼2 to 100 keV. Neutron differential elastic scattering cross sections of natural carbon are measured from 1.5 to 4.0 MeV at incident neutron energy intervals of ≲100 keV, over an angular range of ∼20 to 160 deg and with energy resolutions of 20 to 50 keV. The experimental results are interpreted in terms of a multilevel R-function analysis. Results are compared with measured and evaluated neutron total and scattering cross sections and with scattered neutron polarization data reported in the literature. The present work suggests that the observed neutron total and scattering cross sections of carbon are physically consistent and suitable for use as a reference standard in experimental studies of neutron processes. The R-function interpretation provides a convenient description of neutron total and scattering cross sections of carbon as a function of both angle and energy.