ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Wyoming OKs construction of TerraPower’s Natrium plant
Progress continues for TerraPower’s Natrium plant, with the latest win coming in the form of a state permit for construction of nonnuclear portions of the advanced reactor.
A. Smith, R. Holt, J. Whalen
Nuclear Science and Engineering | Volume 70 | Number 3 | June 1979 | Pages 281-293
Technical Paper | doi.org/10.13182/NSE79-A20149
Articles are hosted by Taylor and Francis Online.
Neutron total cross sections of natural carbon are deduced from the observed transmission of approximately monoenergetic neutrons through carbon samples of various thicknesses. The measurements extend from ∼0.1 to 4.5 MeV, with resolutions of ∼2 to 100 keV. Neutron differential elastic scattering cross sections of natural carbon are measured from 1.5 to 4.0 MeV at incident neutron energy intervals of ≲100 keV, over an angular range of ∼20 to 160 deg and with energy resolutions of 20 to 50 keV. The experimental results are interpreted in terms of a multilevel R-function analysis. Results are compared with measured and evaluated neutron total and scattering cross sections and with scattered neutron polarization data reported in the literature. The present work suggests that the observed neutron total and scattering cross sections of carbon are physically consistent and suitable for use as a reference standard in experimental studies of neutron processes. The R-function interpretation provides a convenient description of neutron total and scattering cross sections of carbon as a function of both angle and energy.