ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
R. T. Santoro, R. A. Lillie, R. G. Alsmiller, Jr., J. M. Barnes
Nuclear Science and Engineering | Volume 70 | Number 3 | June 1979 | Pages 225-242
Technical Paper | doi.org/10.13182/NSE79-A20145
Articles are hosted by Taylor and Francis Online.
Two- and three-dimensional radiation transport methods have been employed to estimate the nuclear performance of the neutral beam injectors being designed for the Tokamak Fusion Test Reactor. The nuclear heating rates and neutron and gamma-ray energy spectra have been calculated at various locations in a detailed calculational model of the injector using Monte Carlo methods. Calculations have also been carried out using discrete-ordinates methods to obtain estimates of these data in a two-dimensional model of the injector. The two-dimensional calculational procedure was developed as an analytic tool for more cost-efficient scoping and parametric studies of the effects of design changes on the injector performance due to the streaming of 14-MeV neutrons. The nuclear responses and spectra obtained using the two-dimensional calculational model agree with the more definitive data obtained using the three-dimensional model within a factor of ∼5.