The Fokker-Planck equation for the transport of energetic charged particles in hot plasmas and for one-dimensional plane geometries is solved by a new multigroup approach. The numerical scheme proposed here takes into account the strong anisotropy of the Coulomb scattering operator, as well as the possible large values of the removal cross section. Numerical results are given for two particular examples: the transport of protons in a boron hydride plasma and of 3.5-MeV alpha particles in a deuterium-tritium plasma. A good agreement is achieved with corresponding results from a less general “moment method” developed in previous works.