ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
J. A. Bucholz
Nuclear Science and Engineering | Volume 74 | Number 3 | June 1980 | Pages 163-167
Technical Paper | doi.org/10.13182/NSE80-A20115
Articles are hosted by Taylor and Francis Online.
Many detailed multigroup transport calculations require group-to-group Legendre transfer coefficients to represent scattering processes in various nuclides. These (fine group) constants must first be generated from the basic data. This paper outlines an alternative technique for generating such data, given the total scattering cross section of a particular nuclide on a point-wise energy basis, σ(E'), and some information regarding the angular scattering distribution for each initial energy point. The evaluation of generalized multigroup transfer matrices for transport calculations requires a double integration extending over the primary and secondary energy groups where, for a given initial energy, the integration over the secondary energy group may be replaced by an integral over the possible scattering angles. In the present work, analytic expressions for these angular integrals are derived that are free of truncation error. Differences between the present method (as implemented in ROLAIDS) and other methods (as implemented in MINX and XLACS-2) will be explored. Of particular interest is the fact that, for hydrogen, the angular integration is shown to simplify to the point that, for many weight functions, the integration over the primary energy group might also be performed analytically. This completely analytic treatment for hydrogen has recently been implemented in NEWXLACS.