ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
When your test capsule is the test: ORNL’s 3D-printed rabbit
Oak Ridge National Laboratory has, for the first time, designed, printed, and irradiated a specimen capsule—or rabbit capsule—for use in its High Flux Isotope Reactor (HFIR), the Department of Energy announced on January 15.
Chang Yu-Man, L. M. Grossman, P. L. Chambré, B. S. Lew
Nuclear Science and Engineering | Volume 81 | Number 2 | June 1982 | Pages 272-280
Technical Note | doi.org/10.13182/NSE82-A20087
Articles are hosted by Taylor and Francis Online.
A method is presented for calculating the nodal flux distribution and the pin power distribution, as well as the effective multiplication, in a nuclear power reactor described by the one-dimensional, two-group diffusion equation. The method is based on the use of Green's functions in a nodal reactor description, and it extends the work of previous authors by including burnup-induced heterogeneities and by calculating local pin power distributions from spatial flux distributions within the node obtained by piecewise polynomial interpolation. An advantage of the method is that one obtains power and exposure distributions at fine mesh points, while retaining the economy characteristic of solutions of the neutron diffusion equation in the nodal framework. In numerical calculations carried out on model problems, good agreement is achieved between the results of the extended nodal Green's function method and those obtained using the CITATION finite difference code.