ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. Segev
Nuclear Science and Engineering | Volume 81 | Number 2 | June 1982 | Pages 151-160
Technical Paper | doi.org/10.13182/NSE82-A20082
Articles are hosted by Taylor and Francis Online.
Let the lattice consist of an infinite uniform distribution of clusters in an (external) moderator, and let the cluster consist of a uniform distribution of absorber lumps in an (internal) moderator. The lattice is characterized by the parameters: cluster mean chord length, L; probability of neutrons leaving a cluster to collide in the external moderator prior to crossing a cluster, Γ; adjustable Bell factor for the clusters, A; lump mean chord length, I; probability of neturons leaving a lump (in an infinite cluster) to collide in the internal moderator prior to crossing a lump, γ; adjustable Bell factor for the lumps, a; internal moderator volume fraction in the cluster, υm; internal moderator macroscopic cross section, Σm. The flux in (or resonance integral of) the absorber lump is equivalent to the flux in (or resonance integral of) an infinite medium consisting of the lump material, homogenously mixed with a moderator of cross section Σe, given by where The expression for Σe is quite general, the only restriction on the lattice structure being that a cluster contain many lumps. The factor β can be termed the “double heterogeneity” factor abbreviated “doublet.” In the limit of an infinite single cluster β → 1, yielding the correct single heterogeneity expression for Σe. In the limit of small lump volume fractions, the expression for Σe reduces to the expression of Goldstein, as derived from the work of Lane et al. Goldstein's formulation was successfully compared with the experimental data of Lewis and Conolly. The WIMS formulation for a single cluster is almost equivalent to the above formulas with a difference that becomes significant only if the cluster contains a small number of lumps. The equivalence formulations by Tsuchihashi et al., as well as by Stamatelatos, yield results which are discrepant with those of the formulations discussed above and, therefore, have to be judged unsatisfactory.