ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
S. C. McGuire,T. Z. Hossain, R. J. Soave
Nuclear Science and Engineering | Volume 117 | Number 2 | June 1994 | Pages 134-139
Technical Note | doi.org/10.13182/NSE94-A20080
Articles are hosted by Taylor and Francis Online.
The recent use is reported of neutron activation analysis to determine the elemental content of silicon-germanium layers that were epitaxially grown on antimony-doped single crystal silicon substrates. The substrates formed part of gold-contact Schottky diode circuits. Gamma rays from the activation products 75Ge and 77Ge were used, and the usefulness was demonstrated of the gallium Kα X ray, emitted in the electron capture decay of 71 Ge, to identify and quantify the germanium in our samples. Minor components of the silicon matrix and their bulk atomic concentrations for specimens having masses of ∼56 mg were germanium (4 ppm), gold (2 ppm), and antimony (32 ppm). Estimates for the germanium atom fraction x, in the layers, in the range of 6 to 8%, were obtained for the samples studied.