ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NRC’s hybrid AI workshop coming up
The Nuclear Regulatory Commission will host a hybrid public workshop on September 24 from 9 a.m.-5 p.m. Eastern time to discuss its activities for the safe and secure use of artificial intelligence in NRC-regulated activities.
A. N. Nahavandi, R. F. Von Hollen
Nuclear Science and Engineering | Volume 18 | Number 3 | March 1964 | Pages 335-350
Technical Paper | doi.org/10.13182/NSE64-A20054
Articles are hosted by Taylor and Francis Online.
A set of one-group space-dependent neutron kinetics equations for reactor cores with spatially variable moderator density is developed. The solution to this set of differential equations is obtained numerically using an IBM-7094 digital computer. Employing the variational technique of von Neumann, a numerical stability criterion for space-dependent neutron kinetics equations is established. The present analysis is useful in the determination of the core open-loop response as well as the reactor system transient behavior. The open-loop response of a typical boiling-water reactor core for several values of step change in reactivity was determined using the present analysis. These are shown to be in agreement with the results of the classical space-independent neutron kinetics equations. The open-loop characteristic of the reactor core due to a step change in density distribution is also presented. The main distinguishing feature of the present study is the ability to determine the open-loop response due to disturbances (such as a series of successive step changes in density distribution) for which the classical space-independent approach provides no solution. Characteristics of this type are necessary in the dynamic analysis of boiling-water reactors where the system density distribution varies in time and space. A simple approximate method for the solution of the space-dependent neutron kinetics equations is also presented.