ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
P. E. Reagan, F. L. Carlsen, R. M. Carroll
Nuclear Science and Engineering | Volume 18 | Number 3 | March 1964 | Pages 301-318
Technical Paper | doi.org/10.13182/NSE64-A20051
Articles are hosted by Taylor and Francis Online.
Fission-gas release from pyrolytic-carbon-coated uranium carbide particles was studied as part of a fuel-development program for gas-cooled reactors. The particles were contained in a test capsule between concentric cylinders of porous graphite and were heated by fission heat. A small flow of helium was used to sweep the fission gas from the test capsule. Uranium carbide particles coated with three types of pyrolytic carbon (laminar, columnar, and duplex), as well as uncoated uranium carbide particles, were irradiated at temperatures up to 1800 F. The steady-state fission-gas release rates were measured as a function of temperature and burnup. All three coating types greatly reduced the fission-gas release rate from uranium carbide particles; the duplex coating was much better than the laminar or the columnar coatings. Post-irradiation examination revealed less than 0.1% broken coatings for the duplex coating. A radiation-induced reaction zone was observed at the fuel/coating interface for all three types. A correlation was made between the number of broken coatings and fission-gas release rate.