ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
D. R. Harris
Nuclear Science and Engineering | Volume 21 | Number 3 | March 1965 | Pages 369-381
Technical Paper | doi.org/10.13182/NSE65-A20040
Articles are hosted by Taylor and Francis Online.
Fluctuations of the neutron populations in various phase-space regions in a reactor have been examined by development of a three-step analysis. First, the usual transport equation, or an approximation to it, is used to compute the probability that a neutron injected at a certain location in the reactor gives rise to a chain-related descendant neutron in each of a number of differential volume elements in phase space. Second, these conditional probabilities are used to compute product densities, probabilities that nuclear reactions of a certain class are induced in various time intervals by neutrons in each of a number of differential volume elements. Finally, the product densities are used to compute local population moments, parameters arising in the Rossi alpha experiment, auto- and cross-correlation functions, and other quantities of interest in fluctuation studies. The analysis, as applied to various reactor geometries, shows that the usual point-reactor analysis of reactor neutron fluctuations can lead to substantial error in predicting fluctuation magnitudes in startup studies and in determination of some reactor parameters from fluctuation experiments.