ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
James J. Barker, Robert F. Benenati
Nuclear Science and Engineering | Volume 21 | Number 3 | March 1965 | Pages 319-324
Technical Paper | doi.org/10.13182/NSE65-A20035
Articles are hosted by Taylor and Francis Online.
To assess diffusion's importance, the temperature distribution in a cylindrical reactor is derived for a coolant with uniform properties and velocity, taking into account both radial and axial diffusion, for a cosine-J0 power distribution. The fractional temperature rise of the coolant is found to be where Ε(z) = [sin(z) + sin(Ζ)]/2 sin(Ζ), z= π x/2Η′, x is the axial distance from the core center, -Η and Η′ are the core half-height and extrapolated half-height, -Η≤x≤Η; Fn = 1/J0(Pn)·[(Pn/2.405P)2-10, J1(Pn) = 0, P= R/R′ = core radius/extrapolated radius, ρ = r/R, r = radial distance from axis, 0≤r≤R;an = = βnH/Z, 2 Αβn + 1 =[1+4ΑΒ(Pn/R)2]½ , Α = axial diffusivity /u, Β = radial diffusivity /u, u = coolant axial velocity, and The expression is evaluated for a variety of values for all the parameters, and the results are discussed analytically and presented in tables and graphs. The effect is dependent upon the relative size of the diffusion eddies in comparison with the dimensions of the reactor. The eddy diffusivity is proportional to the size of the particles in the bed and is about ten times larger axially than radially. A small core with large fuel particles will be affected by eddy diffusion, thereby reducing hot spots, but a large core with small particles will not. For a core 8 ft in diameter cooled by sodium flowing at 2 ft/sec, the effect is perceptible with 2-in. particles, but not with 0.2-in. particles.