ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
James J. Barker, Robert F. Benenati
Nuclear Science and Engineering | Volume 21 | Number 3 | March 1965 | Pages 319-324
Technical Paper | doi.org/10.13182/NSE65-A20035
Articles are hosted by Taylor and Francis Online.
To assess diffusion's importance, the temperature distribution in a cylindrical reactor is derived for a coolant with uniform properties and velocity, taking into account both radial and axial diffusion, for a cosine-J0 power distribution. The fractional temperature rise of the coolant is found to be where Ε(z) = [sin(z) + sin(Ζ)]/2 sin(Ζ), z= π x/2Η′, x is the axial distance from the core center, -Η and Η′ are the core half-height and extrapolated half-height, -Η≤x≤Η; Fn = 1/J0(Pn)·[(Pn/2.405P)2-10, J1(Pn) = 0, P= R/R′ = core radius/extrapolated radius, ρ = r/R, r = radial distance from axis, 0≤r≤R;an = = βnH/Z, 2 Αβn + 1 =[1+4ΑΒ(Pn/R)2]½ , Α = axial diffusivity /u, Β = radial diffusivity /u, u = coolant axial velocity, and The expression is evaluated for a variety of values for all the parameters, and the results are discussed analytically and presented in tables and graphs. The effect is dependent upon the relative size of the diffusion eddies in comparison with the dimensions of the reactor. The eddy diffusivity is proportional to the size of the particles in the bed and is about ten times larger axially than radially. A small core with large fuel particles will be affected by eddy diffusion, thereby reducing hot spots, but a large core with small particles will not. For a core 8 ft in diameter cooled by sodium flowing at 2 ft/sec, the effect is perceptible with 2-in. particles, but not with 0.2-in. particles.