ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
G. I. Coulbourn, T. G. Williamson
Nuclear Science and Engineering | Volume 35 | Number 3 | March 1969 | Pages 376-383
Technical Paper | doi.org/10.13182/NSE69-A20017
Articles are hosted by Taylor and Francis Online.
The fast-neutron spectrum and dose rate were measured at various distances from a point fission-neutron source in water and in two aluminum and water mixtures using seven threshold reaction detectors and p-i-n silicon diode dosimeters. The experimental results were compared with calculations made using the ANISN computer code. The threshold reactions used were the 115In(n, n′), 32S(n, þ), 64Zn(n, þ), 27Al(n, þ), 56Fe(n, þ), 24Mg(n, þ), and 27Al(n, α). Using experimentally determined counting efficiencies, absolute saturation activities of the threshold reaction products were determined. A method of neutron-spectrum unfolding was devised which represented the fast-neutron spectrum by a group of successive exponentials, calculated from the saturation activities. The reported spectra generally agreed well with the results predicted by the ANISN code. The fast-neutron dose rate was measured directly using p-i-n junction dosimeters and indirectly by applying flux-to-dose conversion factors to the measured fast-neutron flux. Good agreement was obtained between these measurements and calculations