ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
R. L. Bramblett, J. B. Czirr
Nuclear Science and Engineering | Volume 35 | Number 3 | March 1969 | Pages 350-357
Technical Paper | doi.org/10.13182/NSE69-A20013
Articles are hosted by Taylor and Francis Online.
A measurement has been made of the effects of flux depression upon the neutron-induced fission rate in 235U using self-detection techniques. A thin 235U fission detector was irradiated with neutrons from the LRL electron linear accelerator. The change in the fission counting rate was measured when absorber foils of 235U were inserted into the neutron beam. The detector consisted of a parallel-plate fission chamber containing eight 235U foils of thickness ½ mg/cm2 each. The incident neutron energies were measured by time-of-flight within the energy range from 0.46 eV to 2.1 keV and with a timing resolution of 27 nsec/m. The effect of this relatively poor resolution of the energy-averaged fission rate is eliminated by the self-detection technique. The enriched uranium absorber foils varied in thickness from 0.14 to 19 g/cm2, with a 235U content of 93%. In addition, 235U fission and total cross sections were measured with comparable resolution.