ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
M. A. Quddus, R. G. Cochran, D. E. Emon
Nuclear Science and Engineering | Volume 35 | Number 3 | March 1969 | Pages 342-349
Technical Paper | doi.org/10.13182/NSE69-A20012
Articles are hosted by Taylor and Francis Online.
A theoretical study of the axial propagation of plane-thermal-neutron waves in a heterogeneous system is performed in the framework of the P-1 approximation to the Boltzmann equation. The method is based on a modified form of heterogeneous reactor theory due to Feinberg and Galanin. The analysis predicts that the phase interference between the modes of propagation in the axial direction may give rise to resonances in the frequency response of the asymptotic moderator flux. A standing wave pattern is also predicted in the amplitude distribution of the oscillating part of the moderator flux in the axial direction. The relationships between the resonances and the system parameters are investigated. An experimental method that can be useful for the determination of the effective values of the diffusion parameters and the slowing down time is suggested. Numerical calculations for a heavy-water-moderated natural uranium system containing four identical fuel rods are presented in the frequency range from 0 to 1500 Hz. Two resonances are predicted in the transfer function of such a system in this frequency range. A comparison is made with the experimental results published in the literature for a similar system. The complex relaxation length for this system is also calculated numerically in order to study the effect of the resonances in the transfer function on the complex relaxation length. The results show existence of “loops” in the plot of the complex relaxation length.