ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
J. H. Warner, Jr., R. C. Erdmann
Nuclear Science and Engineering | Volume 35 | Number 3 | March 1969 | Pages 332-341
Technical Paper | doi.org/10.13182/NSE69-A20011
Articles are hosted by Taylor and Francis Online.
An energy-dependent transport theory solution for the infinite medium neutron-wave propagation problem is obtained by applying a Laguerre polynomial expansion to represent the flux energy dependence. Integral transform methods are utilized to determine solutions appropriate for a general isotropic scattering kernel and general cross sections. Detailed calculations are performed for a two-term polynomial expansion and an energy-dependent cross-section model. Although the polynomial expansion approximation appears to be quite satisfactory for low modulation frequencies, serious inadequacies exist for higher frequencies where continuum effects are important. A critical frequency is not predicted, and the two-dimensional continuum of eigenvalues is approximated by a series of cuts, the number of which depends on the number of terms in the expansion.