ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
I. Toumi, D. Caruge
Nuclear Science and Engineering | Volume 130 | Number 2 | October 1998 | Pages 213-225
Technical Paper | doi.org/10.13182/NSE98-A2001
Articles are hosted by Taylor and Francis Online.
A new numerical method for three-dimensional two-phase flow computations is presented. The method has been implemented within the FLICA-4 computer code, which is devoted to three-dimensional thermal-hydraulic analysis of nuclear reactor cores. This numerical method is based on a finite volume technique, where convective fluxes at cell interfaces are calculated with an approximate Riemann solver. A strategy for constructing this linearized Riemann solver, which extends Roe's scheme, to solve two-phase flow equations is described. Extension to a second-order-accurate method is achieved using a piecewise linear approximation of the solution and a slope limiter method. For advancing in time, a fully implicit integrating step is used. Some improvements performed to obtain a linearized implicit solution method that provides fast-running steady-state calculations are also presented. This kind of numerical method, which is widely used for fluid dynamic calculations, is proved to be very efficient for the numerical solution to two-phase flow problems.