ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
D. B. MacMillan
Nuclear Science and Engineering | Volume 39 | Number 3 | March 1970 | Pages 329-336
Technical Paper | doi.org/10.13182/NSE70-A19994
Articles are hosted by Taylor and Francis Online.
A mathematical method is described for the computation of the probability distribution of neutron populations in a point reactor with a weak source. The author and his colleagues have previously described a method for doing such computations, and G. I. Bell has described a different method; the present paper uses ideas from both of these older methods plus new formulations for computing the probability distribution from values of the generating function, for evaluating the probability distribution of precursor decay rates instead of that of neutron populations, and for evaluating the effect of short neutron lifetime without using unnecessarily short time steps in numerical integration. As a result, the method presented here is more widely applicable and more accurate than the older methods. The reactor model used here permits taking account of six delayed-neutron precursor groups and of finite neutron lifetime.