ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
E. E. Lewis, G. Palmiotti
Nuclear Science and Engineering | Volume 130 | Number 2 | October 1998 | Pages 181-193
Technical Paper | doi.org/10.13182/NSE98-A1999
Articles are hosted by Taylor and Francis Online.
Red-black algorithms for solving response matrix equations in one- and two-dimensional diffusion theory are examined. The definition of the partial currents in terms of the scalar flux and net currents is altered to introduce an acceleration parameter that modifies the values of the response matrix elements while leaving the flux and net current solutions unchanged. The acceleration parameter is selected for response matrices derived analytically for slab geometry and from the variational nodal method for both slab and x-y geometries to minimize the spectral radius of the red-black iteration matrix for homogeneous media. The optimal value is shown to be independent of the mesh spacing in the fine mesh limit and to be a function only of c, the scattering-to-total cross section ratio. The method is then generalized to treat multiregion problems by formulating an approximate expression for the optimum acceleration parameter and demonstrated for a series of benchmark diffusion problems.