ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Grant awarded for advanced reactor workforce needs in southeast U.S.
North Carolina State University and the Electric Power Research Institute have been awarded a $500,000 grant by the NC Collaboratory for “An Assessment to Define Advanced Reactor Workforce Needs,” a project that aims to investigate job needs to help enable new nuclear development and deployment in North Carolina and surrounding areas.
E. E. Lewis, G. Palmiotti
Nuclear Science and Engineering | Volume 130 | Number 2 | October 1998 | Pages 181-193
Technical Paper | doi.org/10.13182/NSE98-A1999
Articles are hosted by Taylor and Francis Online.
Red-black algorithms for solving response matrix equations in one- and two-dimensional diffusion theory are examined. The definition of the partial currents in terms of the scalar flux and net currents is altered to introduce an acceleration parameter that modifies the values of the response matrix elements while leaving the flux and net current solutions unchanged. The acceleration parameter is selected for response matrices derived analytically for slab geometry and from the variational nodal method for both slab and x-y geometries to minimize the spectral radius of the red-black iteration matrix for homogeneous media. The optimal value is shown to be independent of the mesh spacing in the fine mesh limit and to be a function only of c, the scattering-to-total cross section ratio. The method is then generalized to treat multiregion problems by formulating an approximate expression for the optimum acceleration parameter and demonstrated for a series of benchmark diffusion problems.