ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Grant awarded for advanced reactor workforce needs in southeast U.S.
North Carolina State University and the Electric Power Research Institute have been awarded a $500,000 grant by the NC Collaboratory for “An Assessment to Define Advanced Reactor Workforce Needs,” a project that aims to investigate job needs to help enable new nuclear development and deployment in North Carolina and surrounding areas.
Yu. E. Titarenko, O. V. Shvedov, M. M. Igumnov, E. I. Karpikhin, V. F. Batyaev, A. V. Lopatkin, V. I. Volk, A. Yu. Vakhrushin, S. V. Shepelkov, S. G. Mashnik, T. A. Gabriel
Nuclear Science and Engineering | Volume 130 | Number 2 | October 1998 | Pages 165-180
Technical Paper | doi.org/10.13182/NSE98-A1998
Articles are hosted by Taylor and Francis Online.
The experimental and simulated results of reactivity effects and reaction rate sensitivity to different ranges of neutron energy in heavy water solutions of thorium nitrate are reported. The experiments were carried out at the MAKET critical plant at the Institute for Theoretical and Experimental Physics. The reactivity effects were measured by a critical experimental method using the experimental dependence of lattice reactivity variations as a function of heavy water levels in the core tank. The reaction rates and the functionals were measured in the experimental samples of 27Al, naturCu, and 232Th and of a many-composite Al + 55Mn + naturCu + 197Au + naturLu alloy. The experimental samples were measured using a Canberra comanufactured spectrometer (a GC-2518 Ge detector, a 1510 module, and a 1510 plate with software to emulate a multichannel analyzer on an IBM personal computer).The experimental run yielded macrodistribution of reaction rates R(n,)63Cu in the lattice, the reactivity effects induced by different thorium nitrate concentrations in the heavy water solution within the volume of the experimental setup, the reactivity effects induced by different heights of filling the experimental tank with the thorium nitrate solution, distribution of reaction rates R(n,)63Cu, R(n,)55Mn, R(n,)197Au, R(n,)176Lu, R(n,)27Al, and R(n,)232Th within the experimental volume, and distributions of the functional (n,)27Al/(n,)232Th within the experimental volume.All of the experimental data were simulated by the MCU code and partly by the TRIFON-TREC code. Therefore, it is possible to validate the applicability of the codes for simulating blankets of subcritical accelerator-driven facilities with independent circulation of a heavy water solution of thorium such that 233U buildup to replace the transmuted 239Pu can be studied.The results of the experiments and simulation are tabulated and displayed as plots.