ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Yu. E. Titarenko, O. V. Shvedov, M. M. Igumnov, E. I. Karpikhin, V. F. Batyaev, A. V. Lopatkin, V. I. Volk, A. Yu. Vakhrushin, S. V. Shepelkov, S. G. Mashnik, T. A. Gabriel
Nuclear Science and Engineering | Volume 130 | Number 2 | October 1998 | Pages 165-180
Technical Paper | doi.org/10.13182/NSE98-A1998
Articles are hosted by Taylor and Francis Online.
The experimental and simulated results of reactivity effects and reaction rate sensitivity to different ranges of neutron energy in heavy water solutions of thorium nitrate are reported. The experiments were carried out at the MAKET critical plant at the Institute for Theoretical and Experimental Physics. The reactivity effects were measured by a critical experimental method using the experimental dependence of lattice reactivity variations as a function of heavy water levels in the core tank. The reaction rates and the functionals were measured in the experimental samples of 27Al, naturCu, and 232Th and of a many-composite Al + 55Mn + naturCu + 197Au + naturLu alloy. The experimental samples were measured using a Canberra comanufactured spectrometer (a GC-2518 Ge detector, a 1510 module, and a 1510 plate with software to emulate a multichannel analyzer on an IBM personal computer).The experimental run yielded macrodistribution of reaction rates R(n,)63Cu in the lattice, the reactivity effects induced by different thorium nitrate concentrations in the heavy water solution within the volume of the experimental setup, the reactivity effects induced by different heights of filling the experimental tank with the thorium nitrate solution, distribution of reaction rates R(n,)63Cu, R(n,)55Mn, R(n,)197Au, R(n,)176Lu, R(n,)27Al, and R(n,)232Th within the experimental volume, and distributions of the functional (n,)27Al/(n,)232Th within the experimental volume.All of the experimental data were simulated by the MCU code and partly by the TRIFON-TREC code. Therefore, it is possible to validate the applicability of the codes for simulating blankets of subcritical accelerator-driven facilities with independent circulation of a heavy water solution of thorium such that 233U buildup to replace the transmuted 239Pu can be studied.The results of the experiments and simulation are tabulated and displayed as plots.