ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
M. W. Golay, K. B. Cady
Nuclear Science and Engineering | Volume 43 | Number 3 | March 1971 | Pages 303-314
Technical Paper | doi.org/10.13182/NSE71-A19976
Articles are hosted by Taylor and Francis Online.
Axial neutron-pulse propagation experiments were conducted in cylindrical cores of the Cornell University Zero Power Reactor (ZPR). Energy-dependent neutron diffusion theory is found to provide a good prediction of the kinetic behavior of the assemblies. At short times the reactor response is that of an infinitely long reactor, and at long times exponential decay of Helmholtz spatial modes is observed. A space-independent pulse propagation velocity is not observed in most of the assemblies. Such a result is obtained only in infinitely long assemblies, and in most finite-length cores end-effect contamination cannot be neglected. In the Laplace transform domain the neutron density wave dispersion relations are obtained when the transform variable ξ is imaginary in the cores which would be prompt-subcritical if they were infinitely long. When ξ is real, the inverse attenuation length which would be measured in a static exponential experiment in an assembly uniformly poisoned by an absorber of strength ξ/υ is obtained. The agreement between the measured parameters and the predictions of diffusion theory improves as the neutron multiplication of the assembly decreases due to decreased end-effect contamination of the infinitely long assembly response. The effective multiplication of an assembly is seen to decrease due to spectral hardening as