ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
R. L. French, L. G. Mooney
Nuclear Science and Engineering | Volume 43 | Number 3 | March 1971 | Pages 273-280
Technical Paper | doi.org/10.13182/NSE71-A19973
Articles are hosted by Taylor and Francis Online.
The effect of the air-ground interface on the scattered fast-neutron dose near the ground was measured at a distance of 1000 ft from a 14-MeV neutron source. The source was the HENRE accelerator operated at a height of 112 ft on the BREN tower at the Nevada Test Site. A horizontal slab of polyethylene 1 ft thick and 5 ft square, with Hurst-type fast-neutron dosimeters mounted on its upper and lower surfaces, separated the neutrons arriving through the upper 2π solid angle from those from the lower 2π. A third detector, mounted on a boom, measured the free-field. The entire assembly was suspended by a hoist system to make measurements at 0.75 to 70 ft above the ground. The scattered dose at the top detector was essentially constant; that at the bottom detector increased by a factor of approximately 2 between 0.75 and 70 ft, and the free-field dose increased by < 25% over the same height range. The experiment provided confirmation, both qualitative and quantitative, of the “first-last collision model” of the air-ground interface effect.