ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
J. T. Mihalczo, J. J. Lynn, J. R. Taylor
Nuclear Science and Engineering | Volume 130 | Number 1 | September 1998 | Pages 153-163
Technical Paper | doi.org/10.13182/NSE96-121
Articles are hosted by Taylor and Francis Online.
The reactivity worth of a central void region in the Oak Ridge National Laboratory (ORNL) unmoderated and unreflected uranium (93.20 wt% 235U) metal sphere was obtained by replacement measurements in a small (0.460-cm-diam) central spherical region in this 3.4420-in.-radius sphere. The measured central void region worth was 9.165 ± 0.023 ¢ using the delayed neutron parameters of Keepin, Wimett, and Zeigler to obtain the reactivity from the measured stable reactor periods. This value is slightly larger than measurements for GODIVA I with larger cylindrical samples of uranium (93.70 wt% 235U) in the center: 135.50 ± 0.12 ¢/mol for GODIVA I and 138.05 ± 0.34 ¢/mol for the ORNL sphere measurements. The difference could be due to sample size effect. The central worth was also calculated by neutron transport theory methods to be 6.02 ± 0.01 × 10-4 k. The measured and calculated values are related by the effective delayed neutron fraction. The value of the effective delayed neutron fraction obtained in this way from the ORNL sphere is 0.00657 ± 0.00002, which is in excellent agreement with that obtained from GODIVA I measurements, where the effective delayed neutron fraction was determined as the increment between delayed and prompt criticality and was 0.0066. From these ORNL measurements, using the delayed neutron parameters of ENDF-B/VI to obtain the reactivity from the stable reactor period measurements, the central void worth is 7.984 ± 0.021 ¢, and the inferred effective delayed neutron fraction is 0.00754. These values are 14.2% higher than those obtained from use of the Keepin, Wimett, and Zeigler delayed neutron data and produce a value of effective delayed neutron fraction in disagreement with GODIVA I measurements, thus questioning the usefulness of the six-group delayed neutron parameters (fast fission) of uranium from ENDF-B/VI for obtaining the reactivity from the measured reactor period using the Inhour equation.