ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
D. D. Ebert, W. B. Terney, E. A. Williamson, Jr., N. R. Gomm
Nuclear Science and Engineering | Volume 69 | Number 3 | March 1979 | Pages 398-410
Technical Paper | doi.org/10.13182/NSE79-A19958
Articles are hosted by Taylor and Francis Online.
A method for developing maneuvering control strategies using optimal control theory is presented. A computer code, OPXENON, based on Pontryagin's Principle, has been written, tested, and applied to maneuvering control problems. It uses modified one-group diffusion theory with Doppler and moderator feedback, and is able to handle up to 20 mesh points in one dimension and 100 time steps. The neutronics have been verified by comparison with standard maneuvering codes, and the Euler-Lagrange solution has been verified by comparison to known optimization results. Convergence to the optimal or near-optimal control is obtained within a few iterations. The code is particularly useful when there are several conflicting performance criteria. It has been applied to the problem of minimizing the boron interchange during a pressurized water reactor maneuver while maintaining acceptable shapes.