ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
R. G. Alsmiller, Jr., J. Barish
Nuclear Science and Engineering | Volume 69 | Number 3 | March 1979 | Pages 378-388
Technical Paper | doi.org/10.13182/NSE79-A19956
Articles are hosted by Taylor and Francis Online.
Multigroup cross sections (47 n groups, 21 gamma-ray groups) in ANISN format for neutron energies from thermal to 60 MeV and for the elements hydrogen, 10B, 11B, carbon, oxygen, silicon, calcium, chromium, iron, and nickel are described. A P5 Legendre expansion is used at energies , and a P3 Legendre expansion is used at energies . Below 14.9 MeV, the cross sections are from the Radiation Shielding Information Center's fusion energy cross-section library. Above this energy, differential elastic scattering cross-section data from optical model calculations are used, and differential nonelastic scattering data from the intranuclear-cascade-evaporation model are used. Calculated results of the dose equivalent versus depth in the shield from a point isotropic source at the center of a 366-cm-thick spherical shell heavy concrete (density = 3.6 g cm−3) shield are presented. The energy distribution of the source neutrons is approximately that from a Li(D, n) neutron radiation damage facility.