ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
R. G. Alsmiller, Jr., J. Barish
Nuclear Science and Engineering | Volume 69 | Number 3 | March 1979 | Pages 378-388
Technical Paper | doi.org/10.13182/NSE79-A19956
Articles are hosted by Taylor and Francis Online.
Multigroup cross sections (47 n groups, 21 gamma-ray groups) in ANISN format for neutron energies from thermal to 60 MeV and for the elements hydrogen, 10B, 11B, carbon, oxygen, silicon, calcium, chromium, iron, and nickel are described. A P5 Legendre expansion is used at energies , and a P3 Legendre expansion is used at energies . Below 14.9 MeV, the cross sections are from the Radiation Shielding Information Center's fusion energy cross-section library. Above this energy, differential elastic scattering cross-section data from optical model calculations are used, and differential nonelastic scattering data from the intranuclear-cascade-evaporation model are used. Calculated results of the dose equivalent versus depth in the shield from a point isotropic source at the center of a 366-cm-thick spherical shell heavy concrete (density = 3.6 g cm−3) shield are presented. The energy distribution of the source neutrons is approximately that from a Li(D, n) neutron radiation damage facility.