ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
R. M. Bansal, S. P. Tewari, L. S. Kothari
Nuclear Science and Engineering | Volume 69 | Number 3 | March 1979 | Pages 367-374
Technical Paper | doi.org/10.13182/NSE79-A19954
Articles are hosted by Taylor and Francis Online.
Some results of a detailed study of neutron diffusion in water containing 1/v and non-1/v absorbers are reported. We have solved the Boltzmann transport equation in the diffusion approximation using the multigroup method and the recent neutron scattering kernel proposed by the authors. The calculated values of diffusion length, L(T), in pure water in the temperature range from 0.5 to 60°C are found to be in good agreement with most of the experimental results. (Results based on the Nelkin kernel are consistently higher.) The variation of L(T) is nonlinear up to 10°C, but in the temperature range from it can be expressed as L(T) = L (10°C) + 0.00446 (T − 10). The computed values of the diffusion length in water poisoned with various concentrations of boron are consistent with the experimental results of Martinho and Costa Paiva. For non-1/v absorbers—cadmium and gadolinium solutions—calculations on space-dependent neutron spectra are reported. The calculated values of for various concentrations of cadmium and gadolinium are in good agreement with the experimental data of Goddard and Johnson. For high concentrations of cadmium, notable differences are observed between the present calculations and those based on the Nelkin kernel.