ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Neely Nuclear Research Center named a nuclear historic landmark
The American Nuclear Society recently announced the designation of three new nuclear historic landmarks: the Hot Fuel Examination Facility, the Neely Nuclear Research Center, and the Oak Ridge Gaseous Diffusion Plant. Today’s article, the second in a three-part series, will focus on the historical significance of the Neely Nuclear Research Center.
A. F. Debosscher
Nuclear Science and Engineering | Volume 69 | Number 3 | March 1979 | Pages 354-362
Technical Paper | doi.org/10.13182/NSE79-A19952
Articles are hosted by Taylor and Francis Online.
In the present paper, an exact first-order statistical analysis is given of the power and temperature fluctuations in a nuclear power reactor with temperature feedback, which is perturbed by Gaussian white reactivity noise. Using a new technique, the time-independent Fokker-Planck equation for the two-dimensional power-temperature Markov process is solved in terms of a two-dimensional first-order characteristic function. This characteristic function gives a complete first-order statistical description of the investigated stochastic process and allows for the calculation of the marginal and the combined probability density functions of reactor power and temperature. In addition, a general expression for the moments is derived. Since the underlying reactor model has been extensively used in approximate linearized analyses, a comparison can be made of the exact results obtained in this paper with the earlier results, and the validity of the linear approximation can be delimited in terms of two dimensionless system parameters.