ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Salim N. Jahshan
Nuclear Science and Engineering | Volume 130 | Number 1 | September 1998 | Pages 85-97
Technical Paper | doi.org/10.13182/NSE98-A1992
Articles are hosted by Taylor and Francis Online.
The behavior of the average eigenvalue <keff> of the critical one-speed slab reactor is analyzed as a function of local density fluctuation, while keeping the total material loading of the reactor constant, using a combination of analytical and numerical methods. A perturbation of the reference reactor as a binary material medium is used as developed by Pomraning. Two parallel probability distributions are utilized, and the averages as obtained in the corresponding ensembles are compared. These two distributions provide a heuristic description of the physical effects of the spatial perturbation and a methodology that can be extended to practical problems. The sources of increase and decrease in the eigenvalues of the perturbed configurations are identified, and their relative strengths are identified as functions of the reemission factor c. The average eigenvalue is found to always increase for the perturbations and distributions considered and is plotted as function of c from c = 1 to . As the number of regions N (even integer) in the binomial distribution is increased, the number of possible perturbed configurations increases rapidly such that the new members of the ensemble are closer to the reference reactor in fuel distribution, and thus each has an eigenvalue keff increasingly closer to 1. Since these new members predominate the ensemble at large N, <keff> tends to 1 strictly from above as N increases. A similar behavior is observed with the exponential distribution but is tied to the average binary material thickness or the exponential distribution correlation length c. The analysis also shows that (using either distribution) for the same c, <keff> is larger for systems with less scattering in the corresponding reference reactor. In other words, for a fixed c, the maximum <keff> is when s = 0, and the minimum is when a = 0 in the corresponding reference reactors. Some of the conditions on the stochastic perturbation distribution and the cross-section components that are necessary (but may not be sufficient) to produce <keff> below 1 are identified.