ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Grant awarded for advanced reactor workforce needs in southeast U.S.
North Carolina State University and the Electric Power Research Institute have been awarded a $500,000 grant by the NC Collaboratory for “An Assessment to Define Advanced Reactor Workforce Needs,” a project that aims to investigate job needs to help enable new nuclear development and deployment in North Carolina and surrounding areas.
A. D. Caldeira, A. F. Dias, R. D. M. Garcia
Nuclear Science and Engineering | Volume 130 | Number 1 | September 1998 | Pages 70-78
Technical Paper | doi.org/10.13182/NSE98-A1990
Articles are hosted by Taylor and Francis Online.
A degeneracy that may occur in the PN solution to the multigroup slowing-down problem reported in part I of this work is studied. The considered degeneracy is of first order, i.e., it connects only two groups in the defined multigroup structure. The singularities caused by the higher-energy group in the particular solution for the lower-energy group are removed by (a) adding to this solution convenient multiples of the PN modes that define the homogeneous solution for the lower-energy group and (b) applying a limiting procedure to the resulting expression. The propagation of the degenerate solutions to other groups below the lower-energy group is also studied. A test problem posed some years ago in the context of the FN method is solved to demonstrate the consistency of the developed degenerate solutions. Numerical results are tabulated for several orders of the approximation and are compared with previously reported FN results.