ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Grant awarded for advanced reactor workforce needs in southeast U.S.
North Carolina State University and the Electric Power Research Institute have been awarded a $500,000 grant by the NC Collaboratory for “An Assessment to Define Advanced Reactor Workforce Needs,” a project that aims to investigate job needs to help enable new nuclear development and deployment in North Carolina and surrounding areas.
A. D. Caldeira, A. F. Dias, R. D. M. Garcia
Nuclear Science and Engineering | Volume 130 | Number 1 | September 1998 | Pages 60-69
Technical Paper | doi.org/10.13182/NSE98-A1989
Articles are hosted by Taylor and Francis Online.
The PN method is used to solve the multigroup slowing-down problem in plane geometry. A scalar (group-by-group) PN solution that is less limited by computational resources than previously reported vector solutions is developed. The solution is expressed, for a given group, as a combination of homogeneous and particular solutions that satisfies the first N + 1 moments of the corresponding transport equation. An interesting feature of the proposed approach is that the particular PN solution can be written in a form analogous to that of the homogeneous solution, except that a newly introduced class of generalized Chandrasekhar polynomials takes the place of the usual Chandrasekhar polynomials. Numerical results are given for two test problems and compared, for various orders of the approximation, with reference results available in the literature.