ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Seconds Matter: Rethinking Nuclear Facility Security for the Modern Threat Landscape
In today’s rapidly evolving threat environment, nuclear facilities must prioritize speed and precision in their security responses—because in critical moments, every second counts. An early warning system serves as a vital layer of defense, enabling real-time detection of potential intrusions or anomalies before they escalate into full-blown incidents. By providing immediate alerts and actionable intelligence, these systems empower security personnel to respond decisively, minimizing risk to infrastructure, personnel, and the public. The ability to anticipate and intercept threats at the earliest possible stage not only enhances operational resilience but also reinforces public trust in the safety of nuclear operations. Investing in such proactive technologies is no longer optional—it’s essential for modern nuclear security.
A. D. Caldeira, A. F. Dias, R. D. M. Garcia
Nuclear Science and Engineering | Volume 130 | Number 1 | September 1998 | Pages 60-69
Technical Paper | doi.org/10.13182/NSE98-A1989
Articles are hosted by Taylor and Francis Online.
The PN method is used to solve the multigroup slowing-down problem in plane geometry. A scalar (group-by-group) PN solution that is less limited by computational resources than previously reported vector solutions is developed. The solution is expressed, for a given group, as a combination of homogeneous and particular solutions that satisfies the first N + 1 moments of the corresponding transport equation. An interesting feature of the proposed approach is that the particular PN solution can be written in a form analogous to that of the homogeneous solution, except that a newly introduced class of generalized Chandrasekhar polynomials takes the place of the usual Chandrasekhar polynomials. Numerical results are given for two test problems and compared, for various orders of the approximation, with reference results available in the literature.