ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Grant awarded for advanced reactor workforce needs in southeast U.S.
North Carolina State University and the Electric Power Research Institute have been awarded a $500,000 grant by the NC Collaboratory for “An Assessment to Define Advanced Reactor Workforce Needs,” a project that aims to investigate job needs to help enable new nuclear development and deployment in North Carolina and surrounding areas.
Marvin L. Adams, Todd A. Wareing, Wallace F. Walters
Nuclear Science and Engineering | Volume 130 | Number 1 | September 1998 | Pages 18-46
Technical Paper | doi.org/10.13182/NSE98-A1987
Articles are hosted by Taylor and Francis Online.
The performance of characteristic methods (CMs) on problems that contain optically thick diffusive regions is analyzed and tested. The asymptotic analysis holds for moment-based characteristics methods that are algebraically linear; for one-, two-, and three-dimensional Cartesian coordinate systems; and for arbitrary spatial grids composed of polygons (two dimensions) or polyhedra (three dimensions). The analysis produces a theory that predicts and explains how CMs behave when applied to thick diffusive problems. The theory predicts that as spatial cells become optically thick and highly scattering, CMs behave almost exactly like discontinuous finite element methods (DFEMs). This means that there are two classes of CMs: those that fail dramatically on thick diffusive problems and those whose solutions satisfy discretizations of the correct diffusion equation. Most CMs in the latter set behave poorly in general, sometimes producing oscillatory and negative solutions in thick diffusive regions. However, the analysis suggests that certain reduced-order CMs, which use less information on cell surfaces than is readily available, will behave more robustly in thick diffusive regions. The predictions regarding standard CMs are tested by using the linear and bilinear characteristics methods on several test problems with rectangular grids in x-y geometry. The predictions regarding reduced-order CMs are tested by solving x-y test problems on triangular grids using a CM that employs linear functions for cell-interior sources but constants for cell-surface fluxes. In every case the numerical results agree precisely with the predictions of the theory.