ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
Marvin L. Adams, Todd A. Wareing, Wallace F. Walters
Nuclear Science and Engineering | Volume 130 | Number 1 | September 1998 | Pages 18-46
Technical Paper | doi.org/10.13182/NSE98-A1987
Articles are hosted by Taylor and Francis Online.
The performance of characteristic methods (CMs) on problems that contain optically thick diffusive regions is analyzed and tested. The asymptotic analysis holds for moment-based characteristics methods that are algebraically linear; for one-, two-, and three-dimensional Cartesian coordinate systems; and for arbitrary spatial grids composed of polygons (two dimensions) or polyhedra (three dimensions). The analysis produces a theory that predicts and explains how CMs behave when applied to thick diffusive problems. The theory predicts that as spatial cells become optically thick and highly scattering, CMs behave almost exactly like discontinuous finite element methods (DFEMs). This means that there are two classes of CMs: those that fail dramatically on thick diffusive problems and those whose solutions satisfy discretizations of the correct diffusion equation. Most CMs in the latter set behave poorly in general, sometimes producing oscillatory and negative solutions in thick diffusive regions. However, the analysis suggests that certain reduced-order CMs, which use less information on cell surfaces than is readily available, will behave more robustly in thick diffusive regions. The predictions regarding standard CMs are tested by using the linear and bilinear characteristics methods on several test problems with rectangular grids in x-y geometry. The predictions regarding reduced-order CMs are tested by solving x-y test problems on triangular grids using a CM that employs linear functions for cell-interior sources but constants for cell-surface fluxes. In every case the numerical results agree precisely with the predictions of the theory.