ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
G. C. Pomraning, Anil K. Prinja
Nuclear Science and Engineering | Volume 130 | Number 1 | September 1998 | Pages 1-17
Technical Paper | doi.org/10.13182/NSE98-A1986
Articles are hosted by Taylor and Francis Online.
We consider the problem of describing steady-state transport of a perpendicularly incident pencil beam of particles through a thin slab of material. The scattering is assumed to be described by the continuous slowing down approximation in energy and by the screened Rutherford formula in angle. For very small screening parameters, it is well known that the scalar flux, as a function of depth and radius, is described reasonably well by the classic Fermi-Eyges formula. However, realistic screening parameters, such as encountered in medical physics applications, are not small enough for this formula, which is Gaussian in radius, to be accurate. A correction to the spatial component of the Fermi-Eyges formula for screened Rutherford scattering is developed. This correction exhibits an algebraic, rather than exponential, falloff of the scalar flux with radius. Comparisons with benchmark Monte Carlo calculations confirm the inaccuracy of the scalar flux spatial distribution of the Fermi-Eyges formula for realistic screening parameters and demonstrate the good results obtained with the present formalism. Contact is made with earlier work by Molière.