ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NEA panel on AI hosted at World Governments Summit
A panel on the potential of artificial intelligence to accelerate small modular reactors was held at the World Governments Summit (WGS) in February in Dubai, United Arab Emirates. The OECD Nuclear Energy Agency cohosted the event, which attracted leaders from developers, IT companies, regulators, and other experts.
M. I. Pekarsky, C. C. Meek, R. C. Doerner
Nuclear Science and Engineering | Volume 73 | Number 3 | March 1980 | Pages 286-289
Technical Note | doi.org/10.13182/NSE80-A19852
Articles are hosted by Taylor and Francis Online.
A methodology for combining physical considerations with those of autoregressive integrated moving average time series analysis is presented. It is shown that the former can provide identification of the resultant model, while the latter can furnish a means for parameter estimation. Application of the techniques so derived to an analysis of a simulated liquid-metal fast breeder reactor accident experiment demonstrates the method and its usefulness in analyzing transient situations.