ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
High temperature fission chambers engineered for AMR/SMR safety and performance
As the global energy landscape shifts towards safer, smaller, and more flexible nuclear power, Small Modular Reactors (SMRs) and Gen. IV* technologies are at the forefront of innovation. These advanced designs pose new challenges in size, efficiency, and operating environment that traditional instrumentation and control solutions aren’t always designed to handle.
Yung-An Chao
Nuclear Science and Engineering | Volume 80 | Number 3 | March 1982 | Pages 476-480
Technical Note | doi.org/10.13182/NSE82-A19836
Articles are hosted by Taylor and Francis Online.
A space-time kinetic theory is proposed based on the recognition of a much shorter neutron spectral relaxation time than the spatial relaxation time. The neutron flux is factorized into a slowly varying energy-space-time-dependent spectral-shape function ψ(E, r, t) and a fast varying space-time-dependent local amplitude function A(r, t). The energy-independent self-adjoint diffusion equation that determines the local amplitude A(r, t) is defined as the space-time kinetic equation. This space-time kinetic equation is then solved by further decomposing A(r, t) into a relatively slowly varying space-time-dependent spatial-shape function R(r, t) and a fast varying time-dependent point amplitude T(t), which satisfies the point kinetic equation. The functions T(t), R(r, t), and ψ(E, r, t) are iteratively successively calculated, each one with a time increment step of a different order of magnitude. The fast varying delayed-neutron-precursor distribution functions are calculated together with T(t), however without complicating the point kinetic equation. Compared to the conventional approach, this proposed theory makes use less frequently of the multigroup diffusion equation, but more frequently the self-adjoint space-time kinetic equation. In this formulation, the instantaneous flux, not the adjoint flux, is the natural weighting function. This makes the space-time kinetic parameters deducible from monitored neutron spatial distribution data, and therefore the formulation a more appropriate basis for an inverse kinetic theory.