ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
H. Geng, S. M. Ghiaasiaan
Nuclear Science and Engineering | Volume 129 | Number 3 | July 1998 | Pages 294-304
Technical Paper | doi.org/10.13182/NSE98-A1983
Articles are hosted by Taylor and Francis Online.
A model for critical flow in capillaries and cracks of an initially subcooled liquid containing a dissolved noncondensable gas is presented. The model is based on the iterative numerical solution of, and the imposition of critical flow conditions on, one-dimensional two-phase flow conservation equations, everywhere assuming homogeneous equilibrium two-phase flow, and equilibrium between liquid and vapor-noncondensable mixture phases with respect to the concentration of the noncondensable.Model predictions are compared with data from two different sources with good agreement, indicating that the assumption of complete equilibrium between the two phases is adequate for estimating the critical flow in microchannels and cracks. The effect of dissolved noncondensables is examined, and it is shown that the desorption of dissolved noncondensables from water can lead to a slight (up to several percent) reduction in the critical flow rate.