ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Grant awarded for advanced reactor workforce needs in southeast U.S.
North Carolina State University and the Electric Power Research Institute have been awarded a $500,000 grant by the NC Collaboratory for “An Assessment to Define Advanced Reactor Workforce Needs,” a project that aims to investigate job needs to help enable new nuclear development and deployment in North Carolina and surrounding areas.
Man Gyun Na, Belle R. Upadhyaya, Jung In Choi
Nuclear Science and Engineering | Volume 129 | Number 3 | July 1998 | Pages 283-293
Technical Paper | doi.org/10.13182/NSE98-A1982
Articles are hosted by Taylor and Francis Online.
A multivariable adaptive control algorithm is applied to the axial flux shape control in a pressurized water reactor. This is one of the most challenging control problems in the nuclear field. The reactor model used for computer simulations is a two-point xenon oscillation model based on the nonlinear xenon and iodine balance equations and a one-group, one-dimensional, neutron diffusion equation having nonlinear power reactivity feedback that adequately describes axial oscillations and treats the nonlinearities explicitly. The reactor core is axially divided into two regions, and it is considered that each region has one input and one output and is coupled with the other region. The control parameters are updated on-line with the generalized least-squares method to adjust the varying operating conditions. Therefore, this algorithm is able to treat the varying operating conditions well. Also, this control algorithm exhibits very fast responses due to the step and ramp changes of target axial shape without any residual flux oscillations between the upper and lower halves of the reactor core.