ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
Jeng-Ming Fang, Yen-Wan H. Liu, Horng-Kuang Liu, Pin-Wu Kao, Jing-Tong Yang
Nuclear Science and Engineering | Volume 116 | Number 3 | March 1994 | Pages 181-204
Technical Paper | doi.org/10.13182/NSE94-A19812
Articles are hosted by Taylor and Francis Online.
A two-dimensional perturbation method with regionwise flux expansion is developed and tested for the boiling water reactor fast shutdown margin calculation. The ways of generating the two-dimensional parameters for the unrodded bundles are tested to find the one that results in the most accurate eigenvalue of the single-rod-out condition. The use of the one-bundle-per-region flux expansion method gives more accurate results than the ring-regionwise flux expansion method. The first four strongest control rods chosen by this method using one-bundle-per-region flux expansion always contain the top four strongest rods predicted by SIMULATE-3 three-dimensional calculations. The strongest rod is always correctly predicted, and the differences in shutdown margin predictions are <1 mk for all the cases tested. The time saved by using the two-dimensional perturbation method rather than the direct three-dimensional full-core calculation is a factor of ∼10 and even more for larger core loadings. By using correct two-dimensional parameters, the accuracies of the perturbation method itself in the calculations of the eigenvalue and the neutron flux distribution are also tested. It is found that the errors are very small even for such a strong perturbation in the shutdown margin calculation.