ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Jeng-Ming Fang, Yen-Wan H. Liu, Horng-Kuang Liu, Pin-Wu Kao, Jing-Tong Yang
Nuclear Science and Engineering | Volume 116 | Number 3 | March 1994 | Pages 181-204
Technical Paper | doi.org/10.13182/NSE94-A19812
Articles are hosted by Taylor and Francis Online.
A two-dimensional perturbation method with regionwise flux expansion is developed and tested for the boiling water reactor fast shutdown margin calculation. The ways of generating the two-dimensional parameters for the unrodded bundles are tested to find the one that results in the most accurate eigenvalue of the single-rod-out condition. The use of the one-bundle-per-region flux expansion method gives more accurate results than the ring-regionwise flux expansion method. The first four strongest control rods chosen by this method using one-bundle-per-region flux expansion always contain the top four strongest rods predicted by SIMULATE-3 three-dimensional calculations. The strongest rod is always correctly predicted, and the differences in shutdown margin predictions are <1 mk for all the cases tested. The time saved by using the two-dimensional perturbation method rather than the direct three-dimensional full-core calculation is a factor of ∼10 and even more for larger core loadings. By using correct two-dimensional parameters, the accuracies of the perturbation method itself in the calculations of the eigenvalue and the neutron flux distribution are also tested. It is found that the errors are very small even for such a strong perturbation in the shutdown margin calculation.