ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Jae Man Noh, Nam Zin Cho
Nuclear Science and Engineering | Volume 116 | Number 3 | March 1994 | Pages 165-180
Technical Paper | doi.org/10.13182/NSE94-A19811
Articles are hosted by Taylor and Francis Online.
A new nodal method that directly solves the multidimensional diffusion equation without the transverse integration procedure is described. The new method expands the homogeneous flux distributions within a node in nonseparable analytic basis functions satisfying the neutron diffusion equation at any point of the node. Thus, the method accurately models large localized flux gradients in the vicinity of nodal corner points as well as nodal interfaces. To demonstrate its accuracy and applicability to realistic problems, the new method was tested on several well-known benchmark problems, including a mixed-oxide fuel problem, and the initial core of Ulchin Unit 1, which is a Framatome-type pressurized water reactor rated at 2775 MW (thermal). The results show that the new method significantly improves the accuracy in the nodal flux distribution and the core multiplication factor. The method also facilitates pin wise flux reconstruction since the homogeneous flux distributions obtained from the nodal calculation are very accurate and may be used directly in the reconstruction.