ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Senate committee hears from energy secretary nominee Chris Wright
Wright
Chris Wright, president-elect Trump’s pick to lead the U.S. Department of Energy, spent hours today fielding questions from members of the U.S. Senate’s committee on Energy and Natural Resources.
During the hearing, Wright—who’s spent most of his career in fossil fuels—made comments in support of nuclear energy and efforts to expand domestic generation in the near future. Asked what actions he would take as energy secretary to improve the development and deployment of SMRs, Wright said: “It’s a big challenge, and I’m new to government, so I can’t list off the five levers I can pull. But (I’ve been in discussions) about how to make it easier to research, to invest, to build things. The DOE has land at some of its facilities that can be helpful in this regard.”
D. F. Hollenbach, L. M. Petri, H. L. Dodds
Nuclear Science and Engineering | Volume 116 | Number 3 | March 1994 | Pages 147-164
Technical Paper | doi.org/10.13182/NSE94-A19810
Articles are hosted by Taylor and Francis Online.
The object of this research project is to develop a vectorized version of the KENO-V.a criticality safety code, benchmark it against the original version of the code, and determine its speedup factor for various classes of problems. The current generation of supercomputers is equipped with vector processors that allow the same operation to be simultaneously performed on a string of data. Unfortunately, the Monte Carlo algorithm used in KENO-V.a, which tracks particles individually, cannot utilize these vector processors. A new Monte Carlo algorithm that would efficiently utilize the vector processors currently used in computers is needed. The algorithm developed for the vectorized version of KENO-V.a is an event-based, stack-driven, all-zone, implicit-stack Monte Carlo algorithm. This algorithm divides the particles into one of four main stacks: free flight, inward crossing, outward crossing, or collision. A fifth stack, kill, contains all particles that have either leaked from the system or have been terminated by Russian roulette. The main stack, containing the largest number of particles, is the next stack processed. All the particles in the longest stack are processed simultaneously. The generation is complete when the four main stacks are empty. Only the particle number is transferred between stacks; the particle data remain in permanent vector locations and are updated as the particles traverse through the system. This approach minimizes data transfer between stacks and optimizes the vector length, thus maximizing the speedup. For the 25 benchmark problems, speedup factors ranging from 1.8 to 5.7 relative to the optimized scalar version of KENO-V.a were obtained. Problem geometry, material composition, and the number of histories per generation—all have significant effects on the speedup factor of a problem.