ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
NRC begins special inspection at Hope Creek
The Nuclear Regulatory Commission is conducting a special inspection at Hope Creek nuclear plant in New Jersey to investigate the cause of repeated inoperability of one of the plant’s emergency diesel generators, the agency announced in a February 25 news release.
D. F. Hollenbach, L. M. Petri, H. L. Dodds
Nuclear Science and Engineering | Volume 116 | Number 3 | March 1994 | Pages 147-164
Technical Paper | doi.org/10.13182/NSE94-A19810
Articles are hosted by Taylor and Francis Online.
The object of this research project is to develop a vectorized version of the KENO-V.a criticality safety code, benchmark it against the original version of the code, and determine its speedup factor for various classes of problems. The current generation of supercomputers is equipped with vector processors that allow the same operation to be simultaneously performed on a string of data. Unfortunately, the Monte Carlo algorithm used in KENO-V.a, which tracks particles individually, cannot utilize these vector processors. A new Monte Carlo algorithm that would efficiently utilize the vector processors currently used in computers is needed. The algorithm developed for the vectorized version of KENO-V.a is an event-based, stack-driven, all-zone, implicit-stack Monte Carlo algorithm. This algorithm divides the particles into one of four main stacks: free flight, inward crossing, outward crossing, or collision. A fifth stack, kill, contains all particles that have either leaked from the system or have been terminated by Russian roulette. The main stack, containing the largest number of particles, is the next stack processed. All the particles in the longest stack are processed simultaneously. The generation is complete when the four main stacks are empty. Only the particle number is transferred between stacks; the particle data remain in permanent vector locations and are updated as the particles traverse through the system. This approach minimizes data transfer between stacks and optimizes the vector length, thus maximizing the speedup. For the 25 benchmark problems, speedup factors ranging from 1.8 to 5.7 relative to the optimized scalar version of KENO-V.a were obtained. Problem geometry, material composition, and the number of histories per generation—all have significant effects on the speedup factor of a problem.