ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
O. E. Dwyer
Nuclear Science and Engineering | Volume 19 | Number 1 | May 1964 | Pages 48-57
Technical Paper | doi.org/10.13182/NSE64-A19788
Articles are hosted by Taylor and Francis Online.
Nusselt numbers have been calculated for bilateral heat transfer to fluids flowing in annuli. The following four cases have been treated: (A) uniform and equal heat fluxes from both walls, under the condition of slug flow; (B) equal wall temperatures at the same axial location and uniform but unequal heat fluxes from the walls, under the condition of slug flow; (C) same as case (A), except flow is laminar; and (D) same as (B), except flow is laminar. In the calculations, the following assumptions were made: (a) the conditions of fully-established velocity and temperature profiles, and (b) the independence of physical properties with temperature variation across the flow channel. The Nusselt numbers, independent of Reynolds and Peclet numbers, are given as functions of the geometrical parameter, r1/r2, which varied from zero to unity, the former limit representing the case of a round pipe and the latter that of parallel plates. For case (A), the heat-transfer coefficient for the heat transferred from the inner wall becomes infinite at r1/r2 = 0.214 because the inner wall surface temperature and the bulk temperature of the flowing fluid are equal under these conditions. For case (C), this happens at r1/r2 = 0.1685. The differences in Nusselt numbers between cases (A) and (B), and between cases (C) and (D), are appreciable, attaining maxima around r1/r2 = 0.20. At r1/r2 = 1, cases (A) and (B), of course, become identical, as do cases (C) and (D). Finally, equations are given for calculating heat-transfer coefficients for each wall, for the general case where the heat fluxes from the annulus walls are uniform but not necessarily equal.