ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
O. E. Dwyer
Nuclear Science and Engineering | Volume 19 | Number 1 | May 1964 | Pages 48-57
Technical Paper | doi.org/10.13182/NSE64-A19788
Articles are hosted by Taylor and Francis Online.
Nusselt numbers have been calculated for bilateral heat transfer to fluids flowing in annuli. The following four cases have been treated: (A) uniform and equal heat fluxes from both walls, under the condition of slug flow; (B) equal wall temperatures at the same axial location and uniform but unequal heat fluxes from the walls, under the condition of slug flow; (C) same as case (A), except flow is laminar; and (D) same as (B), except flow is laminar. In the calculations, the following assumptions were made: (a) the conditions of fully-established velocity and temperature profiles, and (b) the independence of physical properties with temperature variation across the flow channel. The Nusselt numbers, independent of Reynolds and Peclet numbers, are given as functions of the geometrical parameter, r1/r2, which varied from zero to unity, the former limit representing the case of a round pipe and the latter that of parallel plates. For case (A), the heat-transfer coefficient for the heat transferred from the inner wall becomes infinite at r1/r2 = 0.214 because the inner wall surface temperature and the bulk temperature of the flowing fluid are equal under these conditions. For case (C), this happens at r1/r2 = 0.1685. The differences in Nusselt numbers between cases (A) and (B), and between cases (C) and (D), are appreciable, attaining maxima around r1/r2 = 0.20. At r1/r2 = 1, cases (A) and (B), of course, become identical, as do cases (C) and (D). Finally, equations are given for calculating heat-transfer coefficients for each wall, for the general case where the heat fluxes from the annulus walls are uniform but not necessarily equal.