ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
O. E. Dwyer
Nuclear Science and Engineering | Volume 19 | Number 1 | May 1964 | Pages 48-57
Technical Paper | doi.org/10.13182/NSE64-A19788
Articles are hosted by Taylor and Francis Online.
Nusselt numbers have been calculated for bilateral heat transfer to fluids flowing in annuli. The following four cases have been treated: (A) uniform and equal heat fluxes from both walls, under the condition of slug flow; (B) equal wall temperatures at the same axial location and uniform but unequal heat fluxes from the walls, under the condition of slug flow; (C) same as case (A), except flow is laminar; and (D) same as (B), except flow is laminar. In the calculations, the following assumptions were made: (a) the conditions of fully-established velocity and temperature profiles, and (b) the independence of physical properties with temperature variation across the flow channel. The Nusselt numbers, independent of Reynolds and Peclet numbers, are given as functions of the geometrical parameter, r1/r2, which varied from zero to unity, the former limit representing the case of a round pipe and the latter that of parallel plates. For case (A), the heat-transfer coefficient for the heat transferred from the inner wall becomes infinite at r1/r2 = 0.214 because the inner wall surface temperature and the bulk temperature of the flowing fluid are equal under these conditions. For case (C), this happens at r1/r2 = 0.1685. The differences in Nusselt numbers between cases (A) and (B), and between cases (C) and (D), are appreciable, attaining maxima around r1/r2 = 0.20. At r1/r2 = 1, cases (A) and (B), of course, become identical, as do cases (C) and (D). Finally, equations are given for calculating heat-transfer coefficients for each wall, for the general case where the heat fluxes from the annulus walls are uniform but not necessarily equal.