ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Molten salt research is focus of ANS local section presentation
The American Nuclear Society’s Chicago–Great Lakes Local Section hosted a presentation on February 27 on developments at the molten salt research reactor at Abilene Christian University’s Nuclear Energy Experimental Testing (NEXT) Lab.
A recording of the presentation is available on the ANS website.
G. F. Carpenter, N. R. Knopf, E. S. Byron
Nuclear Science and Engineering | Volume 19 | Number 1 | May 1964 | Pages 18-38
Technical Paper | doi.org/10.13182/NSE64-A19786
Articles are hosted by Taylor and Francis Online.
The effects of neutron irradiation, post-irradiation annealing and re-irradiation on the Charpy V-notch impact transition temperature of pressure-vessel steels were investigated. Specimens representing several heats of pressure-vessel steels were irradiated at elevated temperatures to fast (> 1 MeV) neutron exposures up to 2 × 1020 nvt. The general observation was that irradiation caused an increase in the transition temperature; however, it was discovered that specimens representing various heats of a given material composition could show a vastly different increase in transition temperature due to irradiation. These results have led to the arbitrary classification of these steels as “sensitive” or “insensitive” heats. Possible correlation of heat to heat sensitivity with microstructure is discussed. Post-irradiation annealing in the temperature range of 650–800 F was found to reduce the effects of irradiation on the transition temperature significantly. However, subsequent re-irradiation of specimens that were post-irradiation annealed at 650 F increased the transition temperature to a level that could not be distinguished from that of specimens that were not annealed prior to re-irradiation. Re-irradiation studies were not conducted on specimens that were post-irradiation annealed at the higher temperatures. No explanation of the re-irradiation behavior after annealing is available.