ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Paul E. Snyder, David J. Boes
Nuclear Science and Engineering | Volume 19 | Number 1 | May 1964 | Pages 8-17
Technical Paper | doi.org/10.13182/NSE64-A19785
Articles are hosted by Taylor and Francis Online.
To evaluate the potential health hazard of beryllium under certain circumstances, a study was made of the interaction of metallic beryllium with oxidizing environments. This study consisted of two parts. Beryllium was subjected to the action of hydrocarbon/hydrogen/oxygen flames at temperatures below and above the melting point, A determination was made of the amount of contamination by the oxide of the downstream flue gases. The experiments indicated that the oxidation rates and the contamination are relatively low below the melting point of beryllium (1283 C). Above this temperature, however, it was found that the molten metal burned rapidly when unprotected by an oxide layer. This caused a sharp increase in both rate of oxidation and in downstream contamination. The second part of this study was concerned with the behavior of beryllium when surrounded by water substance. The experimental work was divided into two phases involving reaction in liquid water and in steam. In general, it was found that the oxide layer formed was at first tightly adherent and later became thick and porous. The time between these two conditions depended on temperature, decreasing sharply as the melting point was approached. Upon melting, the oxide layer tended to act as a crucible containing the liquid metal. Under suitable conditions, the liquid would break out of its cage and oxidize very rapidly. When this occurred, the surrounding steam was slightly contaminated with the oxide.