ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
DOE-EM awards $37.5M to Vanderbilt University for nuclear cleanup support
The Department of Energy’s Office of Environmental Management announced on January 16 that it has awarded a noncompetitive financial assistance agreement worth $37.5 million to Vanderbilt University in Nashville, Tenn., to aid the department’s mission of cleaning up legacy nuclear waste.
Paul E. Snyder, David J. Boes
Nuclear Science and Engineering | Volume 19 | Number 1 | May 1964 | Pages 8-17
Technical Paper | doi.org/10.13182/NSE64-A19785
Articles are hosted by Taylor and Francis Online.
To evaluate the potential health hazard of beryllium under certain circumstances, a study was made of the interaction of metallic beryllium with oxidizing environments. This study consisted of two parts. Beryllium was subjected to the action of hydrocarbon/hydrogen/oxygen flames at temperatures below and above the melting point, A determination was made of the amount of contamination by the oxide of the downstream flue gases. The experiments indicated that the oxidation rates and the contamination are relatively low below the melting point of beryllium (1283 C). Above this temperature, however, it was found that the molten metal burned rapidly when unprotected by an oxide layer. This caused a sharp increase in both rate of oxidation and in downstream contamination. The second part of this study was concerned with the behavior of beryllium when surrounded by water substance. The experimental work was divided into two phases involving reaction in liquid water and in steam. In general, it was found that the oxide layer formed was at first tightly adherent and later became thick and porous. The time between these two conditions depended on temperature, decreasing sharply as the melting point was approached. Upon melting, the oxide layer tended to act as a crucible containing the liquid metal. Under suitable conditions, the liquid would break out of its cage and oxidize very rapidly. When this occurred, the surrounding steam was slightly contaminated with the oxide.