ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
O. F. Smidts, J. Devooght
Nuclear Science and Engineering | Volume 129 | Number 3 | July 1998 | Pages 224-245
Technical Paper | doi.org/10.13182/NSE98-A1978
Articles are hosted by Taylor and Francis Online.
A biased Monte Carlo methodology is presented for solving the transport of radionuclide chains through a porous medium in the context of the risk assessment of radioactive waste repositories. It is based on the construction of random walks from an integral equation. This leads to a biased Monte Carlo simulation because it uses the solution of an adjoint reference problem to improve the efficiency of the calculations. The transport of a radionuclide chain is modeled by introducing the notion of a radionuclide "state." The consequence is that only one integral equation has to be considered for the simulation in a continuous - discrete space (r,t;i), where r is the radionuclide position vector, t is time, and i is the radionuclide state. Transport in a random velocity field is also considered by using double randomization techniques.The methodology is illustrated by numerical results on test problems; the score of the simulations being the quantity of radionuclides transferred, during the mission time, to the upper surface of the geological domain. Validations of the simulations are first realized by comparison with analytical solutions, and the influence of biasing techniques is put in evidence. Finally, simulations conducted simultaneously with the generation of a large number of random velocity fields illustrate the feasibility of the method for the transport of radionuclides in a stochastic medium.