ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Prepare for the 2025 Nuclear PE Exam with ANS guides
The next opportunity to earn professional engineer (PE) licensure in nuclear engineering is this fall, and now is the time to sign up and begin studying with the help of materials like the online module program offered by the American Nuclear Society.
J. V. Walker
Nuclear Science and Engineering | Volume 22 | Number 1 | May 1965 | Pages 94-101
Technical Paper | doi.org/10.13182/NSE65-A19766
Articles are hosted by Taylor and Francis Online.
The effects of neutron flux anisotropy upon thermal-neutron flux perturbations were found by experimentally determining the perturbations induced by foils placed in fluxes of known nonuniformities. Anisotropies in the magnitude of the vector flux were introduced by placing a ‘black’ cadmium absorber sheet in an isotropic flux produced by a uniform slowing-down source in water. The resulting angular and spatial distributions of the thermal-neutron flux were computed by using Yvon's method to solve the Boltzmann equation for an absorbing half space containing a uniform slowing-down source. Using indium foils with thicknesses from 14 mg/cm2 to 184.9 mg/cm2, the relative flux perturbations were measured to within ±1% in regions which varied from a highly directional flux at the cadmium surface to essentially an isotropic distribution several mean free paths from the absorber. The experimental data indicated that the flux perturbations remained constant at all distances greater than about three mean free paths from the non-reentrant boundary, but that the flux depression decreased in the region near and vanished at the boundary. It was concluded, contrary to earlier predictions, that flux perturbation theories, based upon isotropic flux models, cannot be used to correct flux perturbations induced in all anisotropic fluxes. It was pointed out that, if this effect is overlooked, significant errors may exist in some relative or absolute flux measurements made in the region near a boundary or absorber.